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SUMMARY 
It is usually assumed that the pressure in the neighbourhood of a diffusion flame is constant, and the 
momentum problem is then de-coupled from the temperature and composition fields. The observation that 
pressure gradient at the discontinuous flame sheet must itself be discontinuous is sufficient to motivate an 
examination of the true form of the pressure field, which evidently is not constant. A simple analysis of the 
spherical discontinuous sheet model leads to the conclusion that the structure of the intense reaction region 
must play an essential role in fixing local pressure variations. The amplitude of these variations is found 
to be uniformly O(M2), where M is a typical flow Mach number (M ~ 1), but significant changes within 
this range can take place over distances which are O(M~) for a simple chemical reaction. 

1. Introduction 

A diffusion flame can be modelled as a sheet or surface which requires that all of the major 

field variables are continuous in its neighbourhood while certain of their derivatives must 

be discontinuous. This description of the flame, originally proposed by Burke and Schu- 

mann [1], is now well-recognised as a perfectly correct singular solution of the exact con- 

servation equations in the limit of infinitely fast irreversible chemical reaction; removal of 

the singular behaviour through exploitation of singular-perturbation techniques, and the 

interesting result that flame structure can be of two main types, is also now well-under- 

stood. A recent review paper [2] discusses many of the main features of the situation and 

further developments have shown that, on occasions, double-sheeted solutions are neces- 

sary [3], [4]. We shall confine our present investigations to the single-sheet situation and 

indeed still further restrict discussion to the case of the spherical flame. This will allow us 

to focus on the primary task, which is to follow through the consequences of the fact that, 

although the pressure must be continuous at the flame sheet, the pressure-gradient must be 

discontinuous in the sheet model. Previous analysis of the general situation in the neigh- 

bourhood of the flame sheet has shown [5] that every component of the rate-of-deformation 

tensor must be continuous there; the continuity (or mass-conservation) equation then in- 

sists that density gradients must likewise be continuous. Since the sheet model is essentially 

one for which temperature and composition gradients are discontinuous it follows from 
the thermal equation of state, p = pT Z~ (cJW~), that 

dPl+ (FdT-I  + / c~s \ 1 Fde~-I +)  

j_ 

for the spherical flame with dimensionless ra.dial co-ordinate r and subscript s denoting 
evaluation at the flame sheet. The symbols are defined as follows; p is the pressure based on 
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Pc, T is the temperature based on To, p is the density based on Pc, c, is the mass fraction 
of species a (whose molecular weight is W, based on We); the square brackets [ ]_+ indicate 
a jump in value at the flame sheet. All subscript c quantities are constant reference values; 
r is measured in units of 9c /uc ,  where 9c  is a typical mass diffusion coefficient and uc is a 
typical velocity. 

The conclusion of the analysis of the discontinuous sheet model is that it is inadequate 
to describe behaviour of the pressure near the intense reaction zone; the essential role of 

flame structure is discussed at the end of the paper. 
So far most theoretical analyses of diffusion flames have decoupled the problem of cal- 

culating T and c~ from the momentum equation(s) by assuming that the Mach number M, 
namely u c divided by the relevant sound speed,* is small; T and c~ can therefore be pre- 
sumed known, together with their jump quantities if necessary. We shall find that the mo- 
mentum equation, together with appropriate boundary conditions and the jump condition 
(1), are together sufficient to determine p and hence p and u, the dimensionless gas velocity 

based on uc. 
Only the simplest chemical kinetics, of the form 

X + F - ,  P (2) 

will be considered; other idealisations will be introduced as the need arises; none affect 

the general conclusions of the analysis. 

2. Temperature and composition fields for the sheet model 

Conservation of mass insists that 

p u r  2 = m o (3) 

where m0 is a constant such that 4rim o is equal to the dimensionless total mass flux from 
the "fuel-sphere" whose surface lies at r = r i. We assume that only fuel, F, and an inert 
diluent species are injected through the fuel-sphere into the space r > ri. We furthermore 
adopt the simplest solution for the diluent mass fraction co; it is available when all species 

in the mixture have the same diffusion coefficients and simply states that 

co = co o o, r >= rl, (4) 

where cob  is a constant. If all species have the same specific heats the communicable 
enthalpy h can be written as T + Q(cx  + cr), where Q (>  0) is the appropriate chemical 
energy. When the Lewis number is one, and all terms in the energy equation which are 
O(M 2) are neglected, a general solution h = H + Ce  z exists which has H and C constant, 

where Z is defined as 

)~ = (mo/p@rZ) dr. (5) 
s 

* It is convenient to choose the isothermal sound speed (pdpc)~ in the present problem since it avoids the 
necessity to introduce the specific heats ratio at Various points in the analysis; no confusion need arise 
from use of the words "Mach number" since the isothermal and the more usual isentropic sound speeds 
are numerically nearly the same and are identical on an order of magnitude basis. 
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An explanat ion of  the foregoing results can be found in the Appendix.  Here  N is the di- 

mensionless m a s s  diffusion coefficient and rs is the f lame-sheet  radius. Much  the easiest 
solution has C = 0 and H = T~, where T s is the flame-sheet tempera ture ;  in these circum- 

stances it is necessary to accept that  T i ( -  T(r = r~)) is determined when . r  i is given, Or 
vice versa, but  this is not  seriously restrictive and so we henceforth adop t  the simple so- 

lution 

T + Q(cx + cv) = T~. (6) 

The  fuel and  oxidant-species fields for  the discontinuous sheet-model  are given by 

- c o ~ ) ( 1  - eX), r~ < r < rs, ( 7 a )  CF = (1 

= 0, r > r~; 

Cx = (1 - coo~)(e z - 1), r > rs, 

= O, r i ~ r < rs; 

(7b) 

I t  has been assumed that  all species have the same molecular  weight, namely We, and that  
no produc t  species exists where r --* oe ; we now find that  eq. (1) reduces to 

+ 2(~mo 

= L dr J_  - ; (S) 

(9) 

(10) 

where 

O = O(1 - cvo~). 

I f  T~ is the value of  T as r --* o% eq. (6) gives 

T ~ = T ~ o + O ,  

since c x -+ 1 -- co~ when r --* oe. The flame sheet radius is found implicitly f rom (7b) and 
this latter condition,  namely  

mo (dr /p~r  2) = In 2. (11) 
r s  

Since p ~  must  o f  necessity be abou t  unity, (11) shows that  mo and r s must  be of  com- 
parable  size. The Mach  number  M has already appeared  (prior to (5)) in its role as a small 
parameter ,  and we can reasonably take m0, rs, ~ s  and (~ as O(1) in the limit as M 2 ~ 0. 
We reiterate that  the solutions presented in this Section are correct  to O(M 2) relative to 
unity. 

Finally in this Section we note that  the equat ion of  state simplifies to 

p = p r  (12) 

when all molecular  weights are the same. F r o m  (3) it follows that  

pu = moTr -2. (13) 

Since (6) and (7, a, b) give T = T(r) in the intervals r i < r < r~ and r~ < r it is clear that  

Journal of Engineering Math., Vol. 11 (1977) 193-202 



196 C. A. Cooper and J. F. Clarke 

(13) gives pu as a known function of r in these same intervals. It is furthermore clear that 
pu and its first and second derivatives with respect to r are likewise known to within an 
error O(M2). The connection from one interval to another is made via (8) supplemented by 

[p]+ = 0. 

3. The momentum equation 

In the present system of dimensionless variables the momentum equation for a spherically 

symmetrical flow is 

dr -~r ~p~Sc dr + 4p~SCdr r r 2 dr J (14) 

where Sc is the Schmidt number. The momentum equation (11) is discussed in the Appen- 
dix, and the Schmidt number is also defined there. Evidently u can be eliminated in favour 
o f p  by using eq. (13) but it is also necessary to make some decision about the behaviour 
of the product p~ .  The diffusion coefficient varies with T and p in proportion to T a +,O/p; 
more extensive analysis has shown that nothing of the broad features of the solution is 
sacrificed by making the index co = 0; it follows from eq. (12) that we can set* 

p ~  = 1. (15) 

Then (13), (14) and (15) combine to give 

_ _ { [ a l p  d2p z d2f df dp 
p3 = M 2 ~Sc - fP dr" + p ~2rZ - 2P dr dr dr 

2 p Z  df 2 dp 2 
+ 2 f  

r dr r dr r 2 p 

r 2 d r  - Pf-~r ' 

where 

f = f(r) = moT(r)/r 2. (16b) 

As it stands (16a) is exact; if one uses (6) and (7) to provide the function T(r) then an 
error term of order O(M 4) in the right-hand side is implied. In any event (16) is a non- 

linear second-order equation for p as a function of r, and requires two boundary con- 

ditions which we shall provide in the form 

p(ri) = p~ (given), (17a) 

p(r ~ oo) ~ 1. (17b) 

Eq. (17b) implies that it is the pressure arbitrarily far away from the flame and fuel spheres 

that is used for the reference pressure Pc (see (1), et seq). 

* The case o) = 1, p.@ = T has been treated by Cooper [6] and confirms the foregoing statement. 
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4. Approximate solutions for the flame sheet pressure 

An exact solution of  (16a) is not  available, but it is clear that  a consta0t  value o f p  is not  
even acceptable locally as a solution, since substi tution of  this form into the equat ion pro- 
duces  the contradic tory  result that  p '  is p ropor t iona l  to M z. (N.B. We use a pr ime f rom 
now on to denote  differentation with respect to the independent  variable.) 

However ,  since M z is a small numbe r  it is evidently reasonable to propose  approx imate  

solutions in r ~ r s which begin 

p = p(r; M 2) ~ A (-+) + MZp(+-)(r); r ~ r s. (18) 

A (+-) are two constants,  not  necessarily the same, which are presumed to be O(1) in the 

M 2 limit. The  equat ions satisfied by p(-+) are found by putt ing (18) into (16a), dividing 
th rough  by M 2 and taking the limit M 2 ~ 0. The result is, in view of  (16b), 

A(• (+)' = ~Scmo \ - ~ - j  - ~ -  ~T , (19) 

and it follows at  once that  

T'  r _ 2m~ dr + B (• (20) A(•177 = ~Scmo~ T - m2o ~ -  ~ -  , 

where B <• constants  of  integrat ion for r <> rs. 

Results (6) and (7) show that  

T = Ts -T- O(e x - 1), r ~ r~. (21) 

In  view o f  (15), (5) shows that  

m o m o 
Z - , (22) 

rs r 

and (11) gives 

m o = r, In 2. (23) 

Consequent ly  it is possible to carry  out the integrat ion in (20) and so express p<-+) as an 

explicit funct ion of  the radius r. In fact 

-2m2o ~3-dr = ~r  4 [T, -+ O] - + r4 O~ ezN m o  �9 r ~ rs, (24a) 

where 

N ( x )  = x + 3x 2 + 6x  a + 6x 4. (24b) 

We can take  A (+) = 1 in r > rs, so that  condi t ion (17b) is met  by m a k i n g p  ( +)(r ~ oo) ~ 0. 
Not ing  tha t  e z ~ 2 as r ~ oo we find that  

B (+) = - 2 4 ~ / m ~ .  (25) 
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In rather less explicit form we can also write the solution as 

p(+) = 4Scmo r2- m + 2rn ~ - d r ;  r > r s. (26) 

This version is useful for later purposes of comparison. When r --* rs (Z ~ 0), t9 (+) takes 
the value p~ +), which can easily be found from (26), etc., if need be; we note that p~+) is 
always negative. 

The solution p ~ 1 + M2p (-)  appears to be satisfactory for all r > rs until we recall 
that continuity o f p  must make p ~ 1 + M2p (-)  in r < r~ (p(-) follows from (20) with 
A (-~ = I); however the subsequent conclusion that [dp/dr] +_ is O(M 2) is at variance with 
the requirement in (8), which insists that this jump must be O(1). 

The fact that M s multiplies p"; the highest derivative of p, in (16a) naturally leads one 
to suspect singular perturbation in the limit as M 2 --* 0. In this case it appears that inner, 
or boundary-layer-like, behaviour of the variables is to be found in the neighbourhood of  
the flame sheet at rs. This is an interesting feature since one would normally anticipate 
singular behaviour in the vicinity of a boundary such as r = r~, where the initial, outer, 
approximation fails to satisfy some imposed condition such as (17a). Evidently the sheet 
at r~ constitutes a boundary in the particular sense that an inner, boundary-layer-like, so- 
lution exists in its neighbourhood. It is unusual in that continuity or jump conditions serve 
to describe the behaviour of the pressure near r~, rather than some specific statement about 
the value of the pressure at the sheet; indeed it is part of the problem to actually determine 

this quantity. 
The necessity to match the solution for p in the inner region near r~ with the outer so- 

lution (26) indicates that p - 1 must still be O(M2). The only feasible form for the new, 

inner, co-ordinate is therefore 

r = r, + M2R  (27) 

whence, writing 

p ~ 1 + M2p(+)(R),  (28) 

it follows from (16a) that P(+-) satisfies the equation 

p( +- )' = - Fsp ( +- )" (29a) 

where 

F, - 4SemoTff3r z > 0. (29b) 

Thus 

P(+-) = C (+-) + D(+-)e -~R. (30) 

Matching in r > rs requires P(+)(R -~ c~) to tend to p(+)(r = r~) = p~+), so that 

c (+) =p~+). (31) 

Since matching in r < rs requires us to examine P(-)  as R ~ - ~ it follows that 

D (-) = 0. (32) 
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The jump [dp/dr] + _ therefore reduces to (dP(+)/dR)~=o and condition (8) gives 

D e+) = 2 (~mo/Fs~r  2 ~- 3@2ScT~.  (33) 

The final result in (33) derives from (29b), (15) and (12), plus recognition of the fact that 
p at r~ is equal to 1 to within an error which is O(M2).  

Finally, continuity of p at r s makes 

C (-)  = C (+~ + D (+) "" p~+~ + 30~/2ScT~ 2. (34) 

We note that 1 + MaC (-~ is the value of the pressure p at the flame sheet; p~+~ is known 
to be negative, so the sign of  C (-~ may be positive or negative depending on the values of 
(~, T~ and Sc. 

The solution for p in r < G is continued by matching p( -~ in (20) with the constant C (-~; 
in view of (32) C (-~ is not only the value of (p - 1)/M 2 at r = r~ but is also the entire 

inner solution in r < rs. Clearly we must make A (-~ = 1 and one readily finds that 

T' /7/2 4 T +  2m~ / d r  + B (-~ (35a) p( - )  = ~Scm o r ~ - -  r- T .  

where 

a L 
3 (-7 = c ~-~ - ) S c m 2 - -  + m2 ~ .  

r s F s 
(35b) 

At this stage we have an estimate of the pressure field from r ~ Qo down through to 
values of  r which lie well within the flame sheet. A more detailed analysis, together with 
some numerical examples, is provided in [6]. The main features of this pressure field, 
namely the very rapid drop in pressure which occurs near the sheet plus the fact that the 
amplitude of the total variation is universally small and O(M2), are interesting and we 
shall return to consider them again shortly. However we must recognise that (34) cannot 
provide the full solution for p right down to r~, since it will not usually give the value p~ 
(see (17a)) at this location. The remedy is of course the insertion of another pressure 
boundary-layer between solution (34) and the imposed value (for details see reference [6].) 
Since our  object is to study the pressure field near the flame we shall not pursue this matter 
any further. 

5. The essential role of flame structure 

The analysis of the discontinuous sheet model of the flame has shown that a region of 
rapid pressure variation exists in a domain of dimension O(M 2) adjacent to the flame Sheet 
at r~. Referring to (16a), this conclusion has been reached on the assumption that f ,  f '  

and f "  are all O(1) on either side of the sheet. However it is known (reference [2]) that the 
flame has a structure which makes T, T' and T" and hence of course f ,  f '  and f "  too, vary 
continuously in the neighbourhood of rs, as well as elsewhere within the field. Most im- 
portantly, for the simple reaction introduced in (2), T" is proportional to e-+ over a domain 
of  dimension O(e ~) centred round r s, where e is a small number equal to the ratio of a 
typical chemical reaction time to a typical diffusion time ~c /u  2. It is shown in [2] that 
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is proportional to  M 2, SO that T" and hence f "  is large like M -~ over a spatial interval 
whose dimension is proportional to M ~. 

An integral o f f "  over an interval of length proportional to M ~ will yield a O(1) quantity. 
We therefore see from (16a) that p is uniformly 1 + M2p  (~) throughout the region of in- 
terest, where p(1) is O(1), and that p(~) can therefore be evaluated to the required order of 
accuracy from an equation like (19). It follows that a uniformly valid solution in r > rl 

can be written as 

T' T f ~ T p(f) = 4Scmo -~-  - m 2 --~ + 2m 2 -rS- dr, r > r i. (36) 
d r  

The formal similarity of this result with (26) is noteworthy. However the latter only ap- 
plies in r > r~ with Tgiven by the upper-sign version of (21). In the present case it is neces- 
sary to recognise that (21) only holds outside a domain Ir - r~l = O(M ~) , and t h a t  within 
this domain [2] 

T ,,~ Ts - ~+Q{~gx(R I) d- (gr(Rs)} (37a) 

where 

Rj. = (r - r~)/~ ~, (37b) 

since e, is asymptotically equal to e~cg,(Ri) with (g, = O(1) when Ry = O(1). An additive 
cbmposite expansion [7] for T gives 

T ,~ T~-T- O(e z - 1) - e+Q{Cgx(Rr) - ~ x ( R I  ~ +_ ~ )  

+ cgr(Ry) - cgv(R I ~ _+ oo)}, r <> r~ (38) 

and 

T' ,~ T O  m o  eZ _ Q{cg~(Rs ) _ c~,(R s ~ + ~ )  
r 2 

+ cg,~(Ry) - cg,~(R s --+ __, oo)},; r<> rs, (39) 

where (g~ = dC~e/dRs, etc. Consequently the second and third terms in (36) are well- 
enough approximated bY using the upper-sign version of (21), even within the domain 
r - rs = O(M~). It is, however, vital to use (39) to estimate the first term within this latter 
domain; observing that Qcg)(R s ~ + oo) will cancel with the first term in (39) for r > r~, 
while ~ ( R f  --+ -4- oo) ~ O, it can be seen that T'  will be zero somewhere within the intense 
reaction region R s = O(1) (see, for example, reference [2].) At this location the pressure 
will be given by 

T 
p(1)~_ - m ~  ~ + 2 m 2 I  ..-S-_-f dr (40) 

rs J rs r 

2 
+ vcm: ,O, 

rs 

where the last result follows from (26) and (2l) and the error is O(M~). Comparing this 
result with (34) it is clear that the magnitude of the pressure within the sheet is not properly 

Journal o f  Engineering Math., Vol. 11 (1977) 193-202 



A spherical diffusion flame 201 

predicted by confining oneself to the sheet model. Certainly the physical extent of the rela- 
tively rapid pressure variations is substantially greater at O(M ~) than the O(M 2) interval 
predicted by the sheet model (see (27) and (28)) and it is clear that the actual structure of 
the intense reaction region has a direct influence on the pressure variations in its vicinity. 

The result that all pressure variations in the vicinity of the flame are small and O(M 2) 

is a validation of the assumption of constant pressure on which most flame analyses are 
based. We observe that pressure gradients are apparently at most O(M ~) for the present 
reaction model. 
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Appendix 

The necessary conservation equations, in particular those for energy and momentum, can 
be found in Chapter 1 of the book by Williams [8]. We note the following specialisations of 
these equations to meet our present needs. 

With a typical dimensional specific heat at constant pressure given by C~ (a constant) 
we assume that the dimensionless specific enthalpy of each species in the mixture is found 
by dividing its dimensional value by CoT ~ and that this dimensionless enthalpy h~ is then 
given by the simplest useful expression, namely h, = C~T + Q, where C~ is the dimen- 
sionless specific heat of species e and Q, is its dimensionless energy of formation; if we 
furthermore assume that all the C~ are the same we may set each C, = 1 without loss of 
generality; in addition we can make Q, = 0, e = X, F, D and Qe = - Q -  Since the en- 
thalpy per unit mass of the mixture must be found from the sum of  c~h~ taken over all 
it follows that it will be given by T + (Cx + cp + cD)Q - Q, But co is constant (see (4)) 
so that we can ignore the terms coQ - Q and use h = T + (c x + ce)Q as the appropriate 
dimensionless communicable enthalpy. 

The Lewis number is defined to be Le = p'N'Cc/2', where p', N' and 2' are dimensional 
density, diffusion coefficient and thermal conductivity respectively. We assume that the 
Lewis number is a constant, so that Le = p c ~ C ~ / ~  too (where 2~ is a constant typical 
value for the thermal conductivity); it fo[|ows that 2'/)~ = p ~  and this fact together with 
the additional assumption that Le = l accounts for the solution quoted for h just above 
equation (5). The O(M 2) terms which are neglected in the present low-speed situation are 
those which account for work done by the thermodynamic pressure and for the viscous 
dissipation effect. 

The Schmidt number is Sc = #'/p'N' which, since it is presumed to be constant, is also 
equal to p c / p ~ ;  p' and #~ are dimensional and typical dynamic viscosity coefficients re- 
spectively. In forming the dimensionless version of the momentum equation (14) the quo- 
tient #'/p~N~ appears in the viscous terms; from the foregoing g'/p~N~ = Sc(p'N'/pr = 
= pNSc. The momentum equation (14) then follows from a straightforward application of 
the results in reference [8], which apply specifically to one-dimensional flows in general 
-rthogonal curvilinear coordinates (in our case these coordinates are of spherical polar form). 
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